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Given an astrophysical observation with an arbitrary carrier frequency and an unknown scale under
an additive white noise, s'(#)=s(at)+n(2), its wavelet transform is W’(a,b)=(s'(1),h.(¢)), as computed
by the inner product with a daughter wavelet h,,(2)=h((t —b)/a)/a. W'(a,b) equals the original trans-
form Wi(a,b)=(s(t),h,,(t)) displaced along the radial direction W’'(a,b)= W (aa,ab) plus noise in the
time-scale joint-representation plane. A bank of wedge-shaped detectors collects those displaced trans-
forms W'(a,b) to create a set of invariant features. These features are fed into a two-layer feed-forward
artificial neural network, to interpolate discrete sampling, as demonstrated successfully for real-time-
signal automatic classification. Useful wavelet applications in turbulence onset, spectrum analyses, frac-
tal aggregates, and bubble-chamber particle-track pattern-recognition problems are indicated but are
modeled, in the interest of simplicity, in a one-dimensional example.

PACS number(s): 87.10.+e¢, 89.90.+n, 85.60.—q

I. INTRODUCTION

There are many interests in applying neural-network
technology to experimental measurements as an automa-
tion tool, e.g., to analyze the astrophysical observation
data of a black hole, a red giant, any evidence of extrater-
restrial life, and the gigabit data rate anticipated from the
future superconducting-supercollider experiments. Simi-
larly, the usefulness of the wavelet transform (WT) to re-
place the Fourier transform (FT) has been demonstrated
in data compression as well. This paper contributes to-
ward solving a generic data processing problem based on
the synergism of both technologies. One of the chal-
lenges in experimental diagnoses is to achieve distortion-
invariant classification. Traditional approaches are based
on time-frequency joint representations (TFJR) such as
the Wigner distribution based on the quantum-
mechanical uncertainty principle and the Woodward am-
biguity function based on the Doppler-shift uncertainty.
Unfortunately, both involve a second-order convolution
and correlation integral of quadratic order, such that
multiple pulses produce a double amount of spectrum
pulses that complicate the identification task for both
TFJIR’s [1]. Recently, a first-order time-scale joint repre-
sentation (TSJR), called the wavelet transform [2-4], was
developed to replace the traditional FT by computing the
TSJIR for noisy wideband transients. Fractal-aggregate
[5] and turbulence data [6,7] have been analyzed by WT,
giving efficient interpretations. Motivated by the high-
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definition-television (HDTV), multimedia satellite com-
munication [B-ISDN (Broadband-Integrated Services Di-
gital Network)], as well as the need for lossless fingerprint
compression to be used in the National Crime Informa-
tion Center, the wavelet transform is being widely adopt-
ed for signal and image processing. Moreover, such a
WT-reduced set of data may be called a wavelet-feature
set, which can be used to train and implement electroni-
cally a smaller size of the artificial neural network (ANN)
for pattern classification [8]. Thus we begin with the
comparison between the WT and the FT as follows.

II. SCALE-INVARIANT WAVELET TRANSFORMS

The WT generalizes the one-dimensional (1D) Fourier
basis, ef(t)=exp(27rift) and harmonics, to a wideband
transient 2D basis, generated by an affine group of scale
and shift operations,

hy(t) =h((t—b)/a)/a . (1)

Usually, digital implementation of the WT uses a discrete
basis, a /a,=2% and b /b, =*I (integer I) for a constant
resolution for different scales. In Eq. (1), the normaliza-
tion constant 1/a is preferred [9] for the subsequent
scale-invariant applications. The admissible condition of
a basis is that a square-integrable kernel A(¢) must have
zero constant component and a sufficiently fast decay at
high frequencies [10]. The WT is defined in the square-
integrable Hilbert space:
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TN {s()} =(hy,(),5(2))
=f—+°°h;},(t)s(t)thW(a,b) . )

The FT is known to be an angle-preserving, or confor-
mal, mapping, which has suggested the design of wedge-
ring detectors in the Fourier plane [11]. This device
works for scale-rotation invariance based on shift invari-
ance because, despite the motion of the object, the
square-law detectors guarantee the object centroid align-
ment at the origin of the Fourier domain. This shift in-
variance is based on the modulus-invariant phase infor-
mation in the following straightforward mathematics:

| TE (g (1)} 12=(ef(2),g(2))[?
=GN
=|G(f)exp(—2mjfb)|?
- ij exp(—2mjft)g(t—b)dt : A3)

On the other hand, the invariant property of the WT is
based on the intrinsic scale property in the TSJR domain
(a,b). The idea is simple. To investigate the invariant
WT is to compute the WT of various scales of the identi-
cal signal. Hopefully, those scale-related WT coefficients
organize themselves in such a fashion that can be easily
collected to produce scale-invariant features. Let a gen-
eric signal under additive white noise be given by

si)=s;(a;t)+n(t), i=12,..., 4)

where the unknown scale a’s (suppressing class index i)
are equivalent to unknown frequency compaction or hop-
ping of similar waveforms s(z). The associated WT
coefficient denoted by the prime is computed

wa,b)= [ " "dts'"(Oh*((1—b)/a)/a
= [ "Tarsnt('—b" s at . (5)

Use is made of the change of variables: t'=at, a'=aa,
and b'=ab, and Eq. (5) becomes exactly equal to the
scaled original W(a,b), Eq. (2), located radially by a fac-
tor of a in both the a and b planes [cf. Eq. (31) of Ref.
[10] for the conventional wavelet normalization of the in-
verse square root of a ], plus noise:

W'(a,b)=W(aa,ab)/a+(noise) . (6)

Example: If a=2, then the signal s(2x) is shrunk by
half (where, for example, the peak value of s(x,) at x; is
shrunk to a location x=x,/2). Therefore the WT
coefficient W’(a,b)= W(2a,2b) is shifted toward the ori-
gin by a factor of 2, so that for a compacted signal the
WT locates toward the center by the factor 2 along both
the a and b axes.

III. DESIGNS AND APPLICATIONS

This observation makes the geometric meaning of Eq.
(6) clear and our design of a wedge detector on the TSJR
plane follows. The wedge filter bank consists of N radial
wedges [see Fig. 3(a)] that have N equally spaced angles

in the upper half plane where a =0,
b,=atan(n,) , (7
b, 1=atan[(n+1)6,], (8)

where 6,=27/N for a total of N wedges. The total out-
put value collected through the wedge-shaped filter
denoted by w, for s'(¢) is integrated

bn+l

w,'lzfowda bgb W'a,b)=w,/a 9)

to give its value 1/a multiplying with that w, for s(z).
Since this formula (9) is true for every wedge-extracted
value, a simple normalization of all values gives us a set
of scale-invariant feature values. This fact is obvious, as
often is the case in hindsight, in that the size information
of the object is mapped to the value of some area integral
and then a simple normalization can ignore the size infor-
mation.

The present technique based on wavelets and neurons
seems to be an ideal tool to solve real-time physics appli-
cation problems that require scale invariance. For exam-
ple, wavelet transforms have been applied to the onset of
turbulent flow by Frisch and Orzag [7], and the Kolmo-
gorov turbulence cascade by Meneveau [6], who have
demonstrated the self-similar nature of the turbulent
flow. Thus the present technique might be used to
enhance the turbulence onset signal giving better diag-
nosis in real fluids, because it collects scale-invariant in-
formation at multiple resolution scales. A similar appli-
cation by Freysz et al. [5] that can be extended by invari-
ant wavelet technique was to investigate the scale-
invariant fractal aggregation in diffusion-limited cases.
Another application of invariant wavelet transform is the
bubble-chamber particle-track-recognition problem with
a large throughput rate in the superconducting-
supercollider experiments. The challenge there is
perhaps similar to the star track minutiae associated with
the task of compressing Federal Bureau of Investigation
(FBI) fingerprint files by a lossless wavelet transform
which is approved by the FBI to be better than the tradi-
tional discrete cosine transform used in HDTV and data
compression. However, the particle tracking is not sta-
tionary and is further compounded by the time-
dependent event under electromagnetic field fluctuations,
for which a scale-invariant wavelet transform automation
may prove to be useful for minor changes in the measure-
ment setup. In the interest of simplicity to bring forward
the use of this synergism between wavelets and neurons
we consider a one-dimensional example. An important
measurement problem in astrophysics is detecting a weak
signal under an unknown Doppler shift. This type of fre-
quency modulation by environmental perturbations is
modeled as follows.

IV. AUTOMATIC CLASSIFICATION

As a generic illustration, we consider two classes of
pulse signals that have arbitrary carrier frequency and
different frequency modulations and hopping. One class
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has high-, low-, and medium-frequency modulated pulses,
denoted as HLM, and the other class has three modulat-
ed pulses of equal frequency, denoted as MMM for a
medium carrier frequency. A natural wavelet to analyze
the change of pulses is the bipolar Haar wavelet
h(t)={—1,+1} [12]. The HLM and MMM signal tem-
plates are shown in Fig. 1. The first and third HLM seg-
ments in Fig. 1(a) have an amplitude of 2 while the mid-
dle segment has 1.75 amplitude, and altogether there are
512 data points. The MMM signal template in Fig. 1(b)
has one medium frequency in three pulses. Training and
test vectors with differing scale and noise are normalized
so each feature has a zero mean and 0.75 standard devia-
tion. The training set consisted of s,(¢) and s,(#) (sub-
scripts denote the two classes), while the test set consisted
of 5,(2¢), s,(2¢), 5,(2¢)+n(t), and s5,(2¢)+n(t), where
n(t) is 20 dB noise. Figures 2(a) and 2(b) show the two
noisy test signals. Figures 3(b) and 4 show simulated
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FIG. 1. Training set for two signal classes: (a) HLM [s,(2)],
(b) MMM [s,(¢)].

wedge outputs for the original HLM signal s,(¢) and
scaled and shifted versions. The wedges in Fig. 4(a) of
the scaled signal are essentially identical to the original in
Fig. 3(b). The wedges in Fig. 4(b) of the shifted signal
show graceful degradation for shifts as well. To capture
shift invariance, one can likewise design a horizontal bar
filter bank (space does not permit us to discuss this fur-
ther).

This invariant feature set can be furthermore fed into a
two-layer feed-forward ANN for both the interpolation
of discrete-sampled wedges and subsequent classification
as demonstrated in the right-hand side of Fig. 5. Each
signal is wavelet transformed by the Haar wavelet, and
collected through 32 wedge detectors and fed into 32 in-
put neurons of the input layer of the ANN. An M XN
two-layer feed-forward ANN has M =1 single output-
layer neuron for two classes (target or clutter) and N =32
neurons at the input layer, one for each wedge detector
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FIG. 2. Two noisy scaled signals from the test set: (a) HLM
[s1(2¢)+n(2)], (b) MMM [s,(2¢)+n(t)].
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FIG. 3. (a) Wedge detector, (b) wedge outputs for s,(z).

(b)
FIG. 4. Wedge outputs for (a) s,(2¢) and (b) s,(¢ +64).

Acousto-optical cell

> WEDGE DETECTOR

H(ema; )~
H (21, 1)

H (2kaMf>

NEURAL NETWORK

FIG. 5. Two-dimensional optical correlator with cylindrical
FT lenses and a bank of the wavelet filters (SLM) for the WT of
a one-dimensional signal (Ref. [10]) followed by the wedge
detector, in the time-b and scale-a domain, and a two-layer
feed-forward neural network for the noisy- and distorted-signal
classification.

output. There are several approaches to treat the
neural-network postprocessing (cf. any textbook for the
Hopfield topdown energy design, the Kohonen self-
organization feature map, the multiple-layer perceptions,
the Grossberg adaptive resonance theory, etc.). We are
not going to discuss the pros and cons of any specific ar-
chitecture, except for the sake of completeness a simple
gradient descent learning algorithm, well known to the
neural-network community as the ‘“backprop”, is de-
scribed as follows.

V. NEURAL-NETWORK LEARNING ALGORITHM

A performance or energy function E(v) is a function of
the output neuron activity function v. The usual choice
is the squared difference of desired output d (during the
training, say one for class 1 and zero for class 2) and the
actual output v.

EWw)=(w—d)?/2 . (10)

The first layer has N =32 neurons whose input #; and
output v; are denoted by the subscript j (note that the i
index of the second-layer neuron is suppressed for a sin-
gle neuron at the second layer considered here and thus
the traditional double indices of the interconnect weight
w;; are also reduced to one index w; for a single neuron at
the second layer). The net input to the second-layer neu-
ron is a w; weighted sum from all outputs from the first

J
layer:
32
u= Y wiv;,—06. (11)
j=1
The soft threshold logic is defined by the logistic function
v=1/[1+exp(—u)], (12a)

which has a non-negative logic with more input u imply-
ing more output v,

dv

= — >
du v(l—v)=0. (12b)
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TABLE I. Network outputs for training and test set.

Training Testing without noise Testing with noise
si(t) HLM O s1(2t) 5X107%  s,(2t)+n(z) 0.023
s,(1) MMM 1 5,(22) 0.999 5,(2¢)+n(t) 0.990

The learning of the interconnect weight value is achieved
by a local gradient descent,
Qw, __ 3
ot dw;

(13)

Then, the standard gradient descent algorithm is used to
determine the weights

dw; 3E | | dv du
= __—‘] = — — —— e——
A= 1% A oo | |du | |Bw, |
=(d—v(l—v;T, (14)

where use is made of the gradient descent to compute the
chain rule of differentiations from Egs. (10)-(12), and
At=r. Given signal templates s,(z), i =1,2, for the train-
ing by Eq. (14), we have achieved perfect classification of
two noisy contracted signals, Eq. (4), with unknown com-
paction scale a;. The network outputs in Table I can be
seen to give the desired results.

VI. OPTOELECTRONIC IMPLEMENTATIONS

An optoelectronic architecture for optical implementa-
tion [10] of the WT preprocessing and the neural-
network classification is given in Fig. 5 [13]. Input data
is represented by an acousto-optical transducer (with a
speed exceeding 1 GHz). Daughter wavelets are encoded
in the form of a film mask, or holographic matched filters
called the spatial light modulator (SLM). The output is a
two-dimensional plane. The horizontal direction corre-
sponds to the shift b (discrete sampled), and the vertical
direction corresponds to the dilation factor a (discrete
sampled). Discrete sampling is taken care of by the fault
tolerance of perceptron neural-network interpolation.
Furthermore, we assume that a small angular separation
0p=2m/N between the width between b,=a tan(n6,)
and b, ;=atan[(n+1)6,] is approximated by a con-
stant width, a6,, for a large N detector bank, as depicted
in Fig. 3(a). This is easier for the layout of the optoelect-
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ronics device so that each row of detectors has an equal
spacing proportional to the location a of the row. A
more expensive monolithic design of the wedge detectors
(where each wedge is a single large detector) can also be
used but the integration time will be longer to slow down
the real-time operation. Then, a simple neural network is
used to classify the yes and no decision about the detec-
tion of a specific event under arbitrary distortion and
noise in the domain of time-scale joint representation.

In an attractive alternative approach, the wavelets at
different shifts and dilations associated with a single
wedge can instead be summed to simplify the detector.
This can be done because the mathematical transform is
linear. In this case, the transform consists simply of com-
puting inner products of each wavelet sum (correspond-
ing to each wedge-shaped detector). Only a single point
detector is then needed for each inner product (one inner
product per wedge), simplifying implementation.

VII. SUMMARY

In conclusion, the alluring synergism expressed in the
Introduction is the linear superposition principle of the
WT that allows a nonsinusoidal kernel to form a discrete
but complete orthonormal set, that happens to match
nicely with the discrete input nature of artificial neural
networks. Thus one suspects that this enhanced capabili-
ty to cope continuously with the real world variability is
perhaps mathematically similar to the human sensor sys-
tems, which, of course, have major design detail
differences due to the adaptation evolution processes.
The bipolar Haar wavelet is chosen for the multiresolu-
tion change detection, via the 4+, —, and summation
operations over different sizes of grids. Our purpose is to
demonstrate the wedge-shaped detectors of different
orientations, similar to the Hubel and Wiesel complex
cortical cells, in order to extract invariant and multiscale
wavelet features from noisy transients. We wish to em-
phasize that this invariant-feature extraction is
mathematically valid for any wavelet prepossessing
scheme and for any neural-network postprocessing archi-
tecture that are chosen appropriately to solve a specific
problem at hand.
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